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Cell Therapy From Bench to Bedside Translation
in CNS Neurorestoratology Era

Hongyun Huang,* Lin Chen,* and Paul Sanberg†

*Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
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Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorest-
orative interventions are the basis for increased optimism. Based on the complexity of the processes of
demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and
recovery, it would be expected that effective therapeutic approaches will require a combination of strategies
encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neu-
romodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have
strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration
has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in
preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue,
stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived
adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells,
oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various pheno-
typic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord,
and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-
derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now
entered a new era in neurorestoratology.
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BRIEF PROFILE OF NEURORESTORATOLOGY neurodegeneration, cerebrovascular anoxia or ischemia,
edema, demyelination, sensory and motor disorders, and

Definition
neuropathic pain, as well as neural damage resulting
from toxic, physical, and chemical factors, immune, in-Neurorestoratology, a distinct discipline within the

neurosciences, has been clearly defined by the Interna- fectious, inflammatory, hereditary, congenital, develop-
mental, and other intractable neural lesions (376).tional Association of Neurorestoratology as one subdis-

cipline and one new branch of neuroscience, which stud-
Inexorable Law of Neuroscientific Innovationies the therapeutic strategies for neural regeneration, repair,

and replacement of damaged components of the nervous Thousands of years ago (approx 2500 B.C.), spinal
cord injuries were described as “crushed vertebra in hissystem, neuroplasticity, neuroprotection, neuromodula-

tion, angiogenesis, immunomodulation, and their mech- neck” as well as symptoms of neurological deterioration
without treatment in the ancient Egyptian medical papy-anisms to cause improvement. The core of neurorestora-

tology is to restore neurological function in humans. The rus known as the Edwin Smith Surgical Papyrus by the
physician and architect of the Sakkara pyramids Imhotepresearch field of neurorestoratology covers various neur-

orestorative treatments including transplantation of tis- (8). Nearly 90 years ago Ramon y Cajal (1926) stated
with certainty: “Once the development was ended, thesue and cells, biomaterials and bioengineering, neuro-

modulation by electrical and/or magnetic stimulation, founts of growth and regeneration of the axons and den-
drites dried up irrevocably. In the adult centers, thepharmaceutical or chemical therapies in neurotrauma,
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nerve paths are something fixed, ended, and immutable. potential to restore lost function. Intervention strategies
include gene therapy, neurotrophic factors, and cellEverything may die, nothing may be regenerated. It is

for the science of the future to change, if possible, this transplantation (195,248,321,377), tissue engineering
(402), and neurostimulation (172,369).harsh decree” (51). Regeneration and restoration of the

central nervous system (CNS) was thought to be almost Neurorestorative Therapy or Surgery. Intervention
an impossibility at that time, although scientists still strategies include cell-based and pharmacological thera-
tried to study the special mystery of human life through pies (423) and electrostimulation (373).
transplanting brain tissues (374), electrical stimulation

Restorative Neuroscience. Intervention strategies in-(156), nerve growth factor (NGF) administration (204),
clude cell transplantation, stimulation, and medicine (11).gene therapy (38), and so forth.

Together, all of the medical terms mentioned aboveCommonly, physicians of traditional clinical disci-
were not considered as distinct disciplines, but instead aplines have believed that sequelae of stroke, CNS
branch of neurology, neurosurgery, or a specific kind oftrauma, neurodegenerative diseases, and damage lack ef-
therapy. The emergence of the term “neurorestoratol-fective treatments. The majority of the medical commu-
ogy,” however, signals the birth of a new discipline,nity now still think that: “Our knowledge of the patho-
which is equally important in comparison with neurol-physiological processes, both the primary as well as the
ogy and neurosurgery (59). The potential mechanisms ofsecondary, has increased tremendously. However, all
action of neurorestoratology techniques are highlightedthis knowledge has only led to improved medical care
below.but not to any therapeutic methods to restore, even par-

tially, the neurological function” (8). Unfortunately, the NEURORESTORATIVE MECHANISMS
majority of physicians remain ignorant or unaware of OF CELL THERAPY
the increasing quantity of published evidence concern-

Neuroprotection by Neurotrophins and Immuneing CNS functional restoration by neuromodulation,
or Inflammatory Modulationneuroprotection, axon sprouting, neural circuit recon-

Bone marrow mesenchymal stem cells (BM-MSCs)struction, neurogenesis, neuroregeneration, neurorepair,
have the capacity to modulate immune/inflammatory re-and neuroreplacement in animal models and patients
sponses in Alzheimer disease (AD) mice, ameliorating(109,285,286,303,351,412).
their pathophysiology, and improving the cognitive de-It is the eternal desire for humans to prolong and im-
cline associated with amyloid-β (Aβ) deposits (199).prove their quality of life, which, with no doubt, it
Neural stem/precursor cells (NSPCs) can be used as anshould be the instinct and responsibility of physicians
immune regulatory tool for autoimmune encephalomy-and neuroscientists to search for effective methods. Ob-
elitis (300). In parallel, olfactory ensheathing cells (OECs)viously, it is inappropriate and overly pessimistic for
play a role in neuroprotection through the secretion ofphysicians to always say that there is no way to help
neurotrophins or growth factors (350). Studies by Chopppatients with the sequelae of diseases and damage to the
and colleagues have proven that transplanting MSCsCNS. Therefore, the new discipline, Neurorestoratology,
into the brain leads to secretion of neurotrophins, growthis bound to arise from neuroscientific innovation, filling
factors and other supportive substances after brain injuryin the question-marked frame shown in Figure 1, which
(307), which change the microenvironment in the dam-aims to create effective therapeutic strategies to benefit
aged area and continually facilitate endogenous neuro-patients.
restorative mechanisms by reducing apoptotic cell death
(55). Garbuzova-Davis et al. (114) and Zwart et al. (429)Evolution of Neurorestoratology
reported that an appropriate dose of mononuclear human

Restorative Neurology. Dimitrijevic put forward this umbilical cord blood (MNC hUCB) cells may provide a
term in 1985. It was defined as the branch of the neuro- neuroprotective effect for motor and optic neurons
logical sciences that applied active procedures to im- through the active involvement of these cells in modu-
prove the functioning of the impaired nervous system lating the host’s immune inflammatory system response.
through selective structural and functional modification Neural protection afforded by adipose-derived stromal
of abnormal neurocontrol according to underlying mech- cells was found to be mostly attributable to activated
anisms and clinically unrecognized residual functions; caspase-3 and Akt-mediated neuroprotective pathway
its intervention strategies included neurostimulation, signaling through paracrine support provided by trophic
neuromodulation, and neuroectomies (83), cell trans- factor secretion (393).
plants (242), drugs (222), and so on.

Neurogenesis and AngiogenesisRestorative Neurosurgery. This term was put for-
ward by Liberson in 1987 (221). Then restorative neuro- In early animal studies using neural stem cell treat-

ments, very few cells become neurons (53) and it wassurgery, as the frontier of neurosurgery, provided the
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Figure 1. Distribution of disease treated by clinical disciplines of neuroscience and relevant cross-
disciplines.

believed that there was no evidence that “new” neurons neuronal subtypes, establish synaptic contact with host
cells, increase the expression of synaptic markers, andcould reinnervate muscle (256). More studies now indi-

cate that mesenchymal stromal cells (137,206) and neu- enhance axonal reorganization in the injured area. Initial
patch-clamp recording demonstrated that the MGE cellsral stem cells could survive, migrate, and differentiate

into endothelial cells or glia and neurons (173,427), received postsynaptic currents from the host cells. Func-
tional recovery could be mediated by neurotrophic sup-form electrically active and functionally connected neu-

rons (15) that form synapses between host and donor port, new synaptic circuit elaboration, and enhancement
of the stroke-induced neuroplasticity (74). Recent find-cells (396), and elicit further functional repair following

transplantation into the adult CNS (81,100,161,210,252, ings of transplanted embryonic dopamine (DA) neurons
into the substantia nigra (SN) indicate that DA neurons349,382). Furthermore, evidence shows that bone mar-

row stromal cells are capable of remodeling the blood could extend neurites towards a desired target through
the brain stem and caudal diencephalon to reconstructvasculature (58).
the neural circuitry from grafted neurons in the host

Neurorepair and Remyelination (315,355). Application of stem cells for neuroreplace-
Many different cell types have been shown to have ment therapy is therefore no longer science fiction—it

potential in the repair or remyelination of CNS diseases is science fact (367). OECs can promote neuroplasticity
(28,92,105,261,265). in neurodegenerative diseases (62), while NSCs can sup-

press abnormal mossy fiber sprouting into the inner mo-Neuroregeneration and Sprouting
lecular layer with subsequent reduction of hippocampal

Schwann cells (SCs) can induce sprouting of motor excitability (165).
and sensory axons in the adult rat spinal cord (214). Ac-
cumulated studies show that OECs are capable of aiding Neuromodulation or Unmasking and Signaling Repair
axon growth or sprouting following transplantation and by Micromilieu Change
continued regeneration of the denervated caudal host

Our clinical study showed that patients with chronictract resulting in the recovery of neurological functions
spinal cord injury have rapid recovery of some functionsin acute (44,211,312,314,409) as well as chronic spinal
following OEC transplantation. The explanation is thatinjury (267).
they changed the local microenvironment by the secre-

Neural Circuit or Network Reconstruction, tion of useful chemicals or growth factors, which can
Neuroplasticity, and Neuroreplacement promote the nerve cell growth, unmasking the quiescent

axons, and therefore restoring some of the lost functionsIn the rat stroke model, a graft of medial ganglionic
eminence (MGE) cells may differentiate into multiple (147). Grafting dental pulp stem/stromal cells (DPSC)
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can promote proliferation, cell recruitment, and matura- alternative therapy for a variety of degenerative and
traumatic disorders (Table 1). It has been argued thattion of endogenous stem/progenitor cells by modulating

the local microenvironment through enhancing ciliary neural transplantation can promote functional recovery
by the replacement of damaged nerve cells, the reestab-neurotrophic factor (CNTF), vascular endothelial growth

factor (VEGF), and fibroblast growth factor (FGF) as lishment of specific nerve pathways lost as a result of
injury, the release of specific neurotransmitters, or thestimulators and modulators of the local repair response

in the CNS (142) and neuromodulation would likely be production of factors that promote neuronal growth
(260,343,360).necessary to realize the full potential of NSC grafts in

restoring function (111). Another study also suggested
Fetal/Embryonic Spinal Cord Tissuethat the inhibitory neurotransmitters γ-aminobutyric acid

(GABA) and glycine secreted by transplanted cells The first successful transplantation of fetal spinal
cord into adult spinal cord was reported in 1983 (291).could be an effective clinical tool for treating spinal cord

injury (SCI)-associated neuropathic pain (91). Some topographical features of the normal spinal cord
may be represented in mature spinal cord transplantsGenerally, the patient’s functional restoration origi-

nated from some or all of the mechanisms as listed (318). Embryonic spinal cord transplants are capable of
replacing damaged intraspinal neuronal populations andabove. But under many conditions, functional recovery

is from neuromodulation or unmasking, neuroprotection, restoring some degree of anatomical continuity between
the isolated rostral and caudal stumps of the injuredsprouting, neural circuit reconstruction, and neuroplas-

ticity by neurotrophins, immune or inflammatory modu- mammalian spinal cord (317). Improved hind limb be-
havioral deficits were observed after fetal spinal cordlation and local microenvironment change, and in a few

cases from neurogenesis or neuroregeneration, and neur- homografts (31). Moreover, the grafted fetal/embryonic
tissue may stimulate partial regression of an establishedorepair (378,409). Neuroreplacement may be an impor-

tant tool for Parkinson’s disease (PD), but may not be a glial scar (141), replace missing motoneurons (353), and
form myelin (324). Data have shown that spinal cordmajor way for functional neurorestoration in most other

CNS diseases or damage. It remains unclear how to ex- transplants support regrowth of adult host axons result-
ing in reconstitution of synaptic complexes within theplain the exact mechanisms for clinical functional recov-

ery; in the future mechanisms by which cell transplanta- transplant that in many respects resemble normal syn-
apses. Transplants of fetal spinal cord may also contrib-tion enhances functional recovery need to be better

understood following further experimental study. ute to behavioral recovery by rescuing axotomized host
neurons that otherwise would have died. Electrophysio-

PRECLINICAL STUDIES OF CELL-BASED logical investigations of functional recovery after intras-
NEURORESTORATOLOGY IN CNS DISEASES pinal transplantation have been recorded (32,375).

Fetal/Embryonic Brain Tissue
Olfactory Ensheathing/Precursor CellsIn 1977, the first evidence was presented that grafts

of fetal brain tissue to the adult CNS could counteract an OECs are cells that display Schwann cell or astro-
cyte-like properties. They are a source of growth factorsexperimentally induced neurological deficit (279). Cell/

tissue suspensions, dissociated from selected embryonic and adhesion molecules that play a very important role
as a neuronal support enhancing cellular survival (179,brain regions, can mediate considerable reinnervation of

a previously denervated brain or spinal cord region, and 292). Transplants of these cells have been shown to have
a neuroprotective effect, supporting axonal regeneration,they can replace neurons intrinsic to a particular target

after intracerebral or intraspinal grafting (277,294). Fetal remyelination of demyelinated axons, neuroplasticity,
neuromodulation, neurogenesis, angiogenesis, anti-inflam-brain tissue, grafted into the CNS of neonatal and adult

animals, has been shown to survive and differentiate (318). matory response, reducing scar and cavity formation,
and/or strong phagocytic activity (107,196,203,233,292,In brain tissue grafts consisting of undifferentiated ma-

trix cells and few neuroblasts, good development was 293,311,341,388,397,398,419). The cellular composition
of the olfactory tissue and the evidence that equivalentobserved both in the lateral ventricle and inside the pa-

renchyma, 30 and 110 days after transplant. They differ- cell types exist in both rodent and human olfactory mu-
cosa suggest that it is potentially a rich source of autolo-entiated into organotypical and histotypical structures

and cells similar to those formed in normal develop- gous cells for transplant-mediated repair of the CNS
(224). Selected relevant studies are listed in Table 2.ment. Nerve and glial cells of these transplants were

well differentiated and tightly connected with the sur-
Schwann Cellsrounding nervous tissue of the host (7). It has been con-

vincingly shown that grafting of fetal/embryonic brain Schwann cells (SCs) play a pivotal role in the mainte-
nance and regeneration of the axons in the peripheralcells/tissue into the brain and/or spinal cord is a useful
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Table 1. Selected Literature in Preclinical Therapeutic Application of Fetal/Embryonic Brain Cells/Tissue

Animal
Disease Host Year Reference Publication Title

Spinal cord trauma
Hemitransected cord cat 1992 401 In vivo magnetic resonance imaging of fetal cat neural tissue trans-

plants in the adult cat spinal cord

Transected cord rat 1977 279 Monoaminergic reinnervation of the transected spinal cord by ho-
mologous fetal brain grafts

rat 1984 68 Fetal locus coeruleus transplanted into the transected spinal cord of
the adult rat: Some observations and implications

Visual deficits rat 1985 361 Fetal brain tissue transplants reduce visual deficits in adult rats with
bilateral lesions of the occipital cortex

Peripheral nerve injury
Sciatic nerve crushed rat 1983 30 Viability, growth, and maturation of fetal brain and spinal cord in

the sciatic nerve of adult rat

Parkinson’s disease rat 1979 294 Brain grafts reduce motor abnormalities produced by destruction of
nigrostriatal dopamine system

Cognitive deficits rat 1983 193 Fetal brain transplant: Reduction of cognitive deficits in rats with
frontal cortex lesions

rat 1987 29 Fetal brain transplants induce recuperation of taste aversion lear-
ning

Brain trauma
Injured motor/sensory cortex rat 1988 121 Fetal frontal cortex transplanted to injured motor/sensory cortex of

adult rats: Reciprocal connections with host thalamus demonstrated
with WGA-HRP

Fimbria-fornix lesions rat 1994 162 The effects of intrahippocampal raphe and/or septal grafts in rats
with fimbria-fornix lesions depend on the origin of the grafted tis-
sue and the behavioural task used

Kainate lesioned cerebellum rat 1989 13 Organization of host afferents to cerebellar grafts implanted into
kainate lesioned cerebellum in adult rats

Hypoxic hypoxia rat 1984 302 Transplantation of embryonic brain tissue into the brain of adult
rats after hypoxic hypoxia

Stroke
MCAo rat 1998 140 Neurotrophin-mediated neuroprotection by solid fetal telencephalic

graft in middle cerebral artery occlusion: A preventive approach

Transient bilateral common Mongolian 2001 23 Transplantation of human fetal brain cells into ischemic lesions of
carotid artery occlusion gerbils adult gerbil hippocampus

nervous system (PNS) due to their ability to dedifferenti- SC migration and myelination is mediated by interac-
tions between sets of extracellular matrix molecules withate, migrate, proliferate, express growth-promoting fac-

tors, and myelinate-regenerating axons (197). Further, cell surface preoteins, genetic engineering of SCs to al-
ter aspects of these interactions is a possible way for-SCs have been shown to form myelin after transplanta-

tion into the demyelinated CNS. They can remyelinate ward. Efforts are, therefore, focused on enhancing their
migration and functional integration into the lesionedspinal cord lesions after experimental demyelination,

leading in some cases to functional recovery in rodent CNS. In addition, efforts are under way to use these
cells as tissue engineer seeds and gene delivery vehiclesand primate models (154). However, SCs do not nor-

mally enter the CNS, and migration of SCs transplanted for an array of molecules with repair potential (33,282).
The SCs ability to promote restorative efforts has led tointo the CNS white matter is inhibited by astrocytes. As
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Table 2. Selected Literature in Preclinical Therapeutic Application of Olfactory Ensheathing/Precursor Cells

Animal
Disease Host Year Reference Publication Title

Spinal cord trauma
Rhizotomized dorsal roots rat 1994 313 Regeneration into the spinal cord of transected dorsal root axons is

promoted by ensheathing glia transplants

rat 1999 271 Ensheathing glia transplants promote dorsal root regeneration and
spinal reflex restitution after multiple lumbar rhizotomy

Rhizotomized ventral roots rat 2002 289 Spinal implants of olfactory ensheathing cells promote axon regen-
eration and bladder activity after bilateral lumbosacral dorsal rhi-
zotomy in the adult rat

Hemitransected cord rat 1997 211 Repair of adult rat corticospinal tract by transplants of olfactory
ensheathing cells

rat 2004 301 Phrenic rehabilitation and diaphragm recovery after cervical injury
and transplantation of olfactory ensheathing cells

Transected dorsal column pig 2000 153 Xenotransplantation of transgenic pig olfactory ensheathing cells
promotes axonal regeneration in rat spinal cord

rat 2003 175 Functional repair of the corticospinal tract by delayed transplanta-
tion of olfactory ensheathing cells in adult rats

rat 2006 339 Protection of corticospinal tract neurons after dorsal spinal cord
transection and engraftment of olfactory ensheathing cells

Transected cord rat 1998 314 Long-distance axonal regeneration in the transected adult rat spinal
cord is promoted by olfactory ensheathing glia transplants

rat 2000 312 Functional recovery of paraplegic rats and motor axon regeneration
in their spinal cords by olfactory ensheathing glia

rat 2001 238 Transplantation of nasal olfactory tissue promotes partial recovery
in paraplegic adult rats

rat 2002 239 Olfactory ensheathing cells promote locomotor recovery after de-
layed transplantation into transected spinal cord

Contusion rat 2001 146 Olfactory ensheathing glias transplant improves axonal regenera-
tion and functional recovery in spinal cord contusion injury

rat 2003 297 Delayed transplantation of olfactory ensheathing glia promotes
sparing/regeneration of supraspinal axons in the contused adult rat
spinal cord

Electrolytic lesions rat 1998 212 Regeneration of adult rat corticospinal axons induced by trans-
planted olfactory ensheathing cells

Photochemical lesion rat 2001 384 Effects of ensheathing cells transplanted into photochemically dam-
aged spinal cord

rat 2004 232 Increased expression of cyclo-oxygenase 2 and vascular endothelial
growth factor in lesioned spinal cord by transplanted olfactory en-
sheathing cells

X-ray irradiation with focal rat 1996 106 Schwann cell-like myelination following transplantation of an ol-
ethidium bromide injections factory bulb-ensheathing cell line into areas of demyelination in the

adult CNS

rat 1998 155 Transplanted olfactory ensheathing cells remyelinate and enhance
axonal conduction in the demyelinated dorsal columns of the rat
spinal cord
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Table 2. Continued

Animal
Disease Host Year Reference Publication Title

rat 2000 24 Identification of a human olfactory ensheathing cell that can effect
transplant-mediated remyelination of demyelinated CNS axons

rat 2004 89 Superparamagnetic iron oxide-labeled Schwann cells and olfactory
ensheathing cells can be traced in vivo by magnetic resonance im-
aging and retain functional properties after transplantation into the
CNS

monkey 2004 310 Remyelination of the nonhuman primate spinal cord by transplanta-
tion of H-transferase transgenic adult pig olfactory ensheathing
cells

rat 2006 338 Molecular reconstruction of nodes of Ranvier after remyelination
by transplanted olfactory ensheathing cells in the demyelinated spi-
nal cord

Sciatic nerve resection rat 1999 385 Olfactory bulb ensheathing cells enhance peripheral nerve regen-
eration

rat 2005 391 Effect of olfactory ensheathing cells transplantation on protecting
spinal cord and neurons after peripheral nerve injury

Facial nerve transaction rat 2001 127 Transplantation of olfactory ensheathing cells stimulates the collat-
eral sprouting from axotomized adult rat facial motoneurons

rat 2002 128 Transplantation of olfactory mucosa minimizes axonal branching
and promotes the recovery of vibrissae motor performance after
facial nerve repair in rats

Optic nerve injury
Optic nerve resection rat 2003 215 Transplanted olfactory ensheathing cells promote regeneration of

cut adult rat optic nerve axons

Glaucoma rat 2008 213 Transplanted olfactory ensheathing cells incorporated into the optic
nerve head ensheathe retinal ganglion cell axons: Possible rele-
vance to glaucoma

Parkinson’s disease
6-OHDA lesions rat 2004 1 Olfactory ensheathing cell transplantation restores functional defi-

cits in rat model of Parkinson’s disease: A cotransplantation ap-
proach with fetal ventral mesencephalic cells

Amyotrophic lateral sclerosis
mSOD1 mouse 2007 250 Adult olfactory bulb neural precursor cell grafts provide temporary

protection from motor neuron degeneration, improve motor func-
tion, and extend survival in amyotrophic lateral sclerosis mice

Cognitive dysfunction
Kainic acid lesions in CA3 rat 2009 359 Long-term functional restoration by neural progenitor cell trans-

plantation in rat model of cognitive dysfunction: Eo-transplantation
with olfactory ensheathing cells for neurotrophic factor support

Stroke
MCAo rat 2009 350 A long term observation of olfactory ensheathing cells transplanta-

tion to repair white matter and functional recovery in a focal ische-
mia model in rat
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an increasing interest in using SC grafts for repair of and unusual antigenic phenotype. Evidence from post-
mortem analysis implicates the involvement of microg-CNS damage (Table 3).
lia in the neurodegenerative process of several neurode-

Oligodendrocyte/Precursor Cells
generative diseases, including AD and PD. Grafting of

Remyelination by transplantation of myelin-forming activated microglia into the lesioned spinal cord may
cells is possible in animal models; evidence suggests promote hind limb motor function recovery in rats and
that both a precursor-type oligodendrocyte as well as an reduce the size of the liquefaction necrosis area (228,
oligodendrocyte that previously formed a myelin sheath 418).
is able to remyelinate the CNS (126,386). Oligodendro-
cytes or precursor cells are much more invasive and Monocyte/Macrophage
have been shown to migrate from the implantation site Monocytes/macrophages play an integral role in the
to the lesion over a distance of several millimeters inflammatory process and angiogenesis as well as acting
(72,387). Indeed, a number of studies have demonstrated as defense mechanisms by exerting microbiocidal and
that transplanted oligodendrocytes survive in the host immunomodulatory activity. The recruited monocytes/
brain, migrate out of the graft, and synthesize myelin. macrophages are capable of regulating angiogenesis in
These cells, therefore, have potential for myelin repair ischemic tissue, tumors, and chronic inflammation. In
after experimental demyelination and in human diseases, terms of neovascularization followed by tissue regenera-
such as multiple sclerosis, though several findings sug- tion, monocytes/macrophages should be highly attrac-
gest that OECs and SCs might be more effective than tive for cell-based therapy compared to other cells due
oligodendrocytes induced from isolated CNS tissue (87, to their considerable advantages: nononcogenic, nonte-
103,153). ratogenic, multiple secretory functions including proan-

giogenic and growth factors and their straightforwardAstrocytes
cell harvesting procedure (348). Increasing the presenceCultured astrocytes have been reported to survive and
of activated macrophage/microglial cells at a SCI sitemigrate following transplantation. Studies have indi-
can provide an environment beneficial to the promotioncated that there are differences in the ability of immature
of regeneration of sensory axons, possibly by the releaseand mature astrocytes to facilitate plastic changes in the
of cytokines and interaction with other nonneuronal cellsadult brain. Immature astrocytes can synthesize trophic
in the immediate vicinity (117,305).factors to support neuronal survival, produce a permis-

sive environment for neurite extension, and reduce scar Purkinje Cells
formation. In contrast, mature astrocytes produce a non-

Purkinje cells have a therapeutic value for the re-permissive environment for axon growth and increase
placement and reconstruction of a defective cerebellarscar formation. Purified astrocytes were capable of facil-
circuitry in heredodegenerative ataxia. Insignificantitating behavioral recovery from frontal cortex ablation,
amelioration of motor skills was found in mice afterdemyelinating lesions in spinal cord, and kainic acid
solid cerebellar tissue transplantation, while the cell sus-(KA) lesions of the striatum (10,104,174,240,392). Im-
pension application had no effect (344,357,358).planted cultured immature astrocytes can stimulate axo-

nal regeneration after injury of the postcommissural for- Tanycyte
nix tract in the adult rat brain (406). In addition,

Tanycytes (TAs) are the specialized ependymal gliabehavior alleviation after astrocyte transplantation was
in the CNS, which are located mostly in the ventral wallshown in rat models of memory deficit induced by
of the third ventricle and median eminence (ME). Theyalpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic
closely interact with local cerebrospinal fluid, blood, andacid lesions, which is independent of cholinergic recov-
neurons. TA is a common component of the brain bar-ery. The cultured astrocytes may exert their effects over
rier system, the brain–cerebrospinal fluid (CSF) neuro-a short time period (less than 2 weeks) around the lesion
humoral circuit, and the immune–neuroendocrine net-site. They can alter the microenvironment and as a result
work. Recent data indicate that TAs transplanted intoless scar tissue was formed followed by less of a barrier
the adult rat spinal cord can support the regeneration ofto the regrowth of nerve fibers (43). Furthermore, evi-
lesioned axons and may represent a useful therapeuticdence indicates that astrocytes at an immature stage of
tool for CNS diseases (306).differentiation are capable of inducing axon growth from

the adult optic nerve (354). Dopaminergic Neurons
Microglia Intracerebral transplantation of dopaminergic (DAer-

gic) neuron/cells is currently performed as a restorativeMicroglia are the principal immune cells in the CNS
and are characterized by a highly specific morphology therapy for PD (273). The success of cell therapy in PD
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Table 3. Selected Literature in Preclinical Therapeutic Application of Schwann Cells

Animal
Disease Host Year Reference Publication Title

Spinal cord trauma
Hemitransected cord mouse 1995 254 Reinnervation of peripheral nerve segments implanted into the

hemisected spinal cord estimated by transgenic mice

Transected dorsal column rat 1994 214 Schwann cells induce sprouting in motor and sensory axons in the
adult rat spinal cord

Transected cord mouse and 1981 2 Influences of the glial environment on the elongation of axons after
rat injury: Transplantation studies in adult rodents

rat 1995 408 Axonal regeneration into Schwann cell-seeded guidance channels
grafted into transected adult rat spinal cord

Contusion cat 1982 403 Reconstruction of the contused cat spinal cord by the delayed nerve
graft technique and cultured peripheral non-neuronal cells

rat 1993 249 Syngeneic grafting of adult rat DRG-derived Schwann cells to the
injured spinal cord

Photochemical lesion rat 1994 46 Transplantation of purified populations of Schwann cells into le-
sioned adult rat spinal cord

Compression injury rat 1987 389 Chronic regenerative changes in the spinal cord after cord compres-
sion injury in rats

Diphtheria toxin injection cat 1980 133 Remyelination by cells introduced into a stable demyelinating le-
sion in the central nervous system

Lysolecithin injection mouse 1981 88 Transplantation of rat Schwann cells grown in tissue culture into
the mouse spinal cord

X-irradiation with ethidium cat 1985 36 The use of cultured autologous Schwann cells to remyelinate areas
bromide injection of persistent demyelination in the central nervous system

rat 1987 37 Schwann cell remyelination of CNS axons following injection of
cultures of CNS cells into areas of persistent demyelination

Optic nerve injury rat 1995 135 Schwann cells and the regrowth of axons in the mammalian CNS:
A review of transplantation studies in the rat visual system

Monocular deprivation rat 1994 296 Schwann cells transplanted in the lateral ventricles prevent the
functional and anatomical effects of monocular deprivation in the
rat

Parkinson’s disease
MPTP mouse 1990 75 Cografts of adrenal medulla with peripheral nerve enhance the sur-

vivability of transplanted adrenal chromaffin cells and recovery of
the host nigrostriatal dopaminergic system in MPTP-treated young
adult mice

monkey 1994 67 Peripheral nerve-dopamine neuron co-grafts in MPTP-treated mon-
keys: Augmentation of tyrosine hydroxylase-positive fiber staining
and dopamine content in host systems

6-OHDA-induced monkey 2004 407 Therapeutic study of autologous Schwann cells’ bridge graft into
hemiparkinsonism the brain of hemiparkinsonian monkey

Brain trauma
Septal-hippocampal lesions rat 1985 187 Transplants of Schwann cell cultures promote axonal regeneration

in the adult mammalian brain

Unilateral fornix transaction rat 1996 362 Reconstruction of transected postcommissural fornix in adult rat by
Schwann cell suspension grafts

Brain stem injury rat 2003 390 Schwann cells transplantation promoted and the repair of brain
stem injury in rats
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greatly relies on the discovery of an abundant source of Embryonic Stem Cells
cells capable of DAergic function in the brain. DAergic ES cells, in particular, possess a nearly unlimited
neuron/precursor cells derived from human embryonic self-renewal capacity and developmental potential to
stem (hES) cells, human-induced pluripotent stem (hiPS) differentiate into virtually any cell type of an organism.
cells, neural stem/progenitor cells, human mesenchymal They can efficiently differentiate into neural precursors,
stem cells, and skin-derived stem cells could be increas- which can further generate functional neurons, astro-
ingly considered as a pivotal choice for transplant (50, cytes, and oligodendrocytes (102,229,231). These cells
188,227,269,372). It is likely that cell replacement in also have the beneficial properties of secreting neuro-
future will focus on not only ameliorating symptoms of trophic and neural growth factors (272). Along with di-
the disease but also try to slow down the progression of rected differentiation, other current efforts are aimed at
the disease by either neuroprotection or restoration of a efficient enrichment, avoidance of immune rejection,
favorable microenvironment in the midbrain (319). demonstration of functional integration, genetic modifi-

cation to regulate neurotransmitter and factor release,
GABAergic Neurons

and directed axon growth with these cells (125).
Transplantation of predifferentiated GABAergic neu-

Neural Stem/Progenitor Cellsrons significantly induces recovery of sensorimotor func-
tion in brain injury (25). A deficiency of GABAergic Neural stem/progenitor cells (NSPCs) are present
neurons in the neocortex leads to the dysregulation of during embryonic development and in certain regions of
cortical neuronal circuits, but this can be overcome by the adult CNS (264). Mobilizing adult NSCs to promote
cell transplantation. Ventral neural stem cells transfected repair of injured or diseased parts of the CNS is a prom-
with neurogenin 1 (Ngn1) are integrated as GABAergic ising approach (3). NSPCs in the adult CNS are capable
neurons within a few days of transplantation into the of generating new neurons, astrocytes, and oligodendro-
adult mouse neocortex, and the transplantation of com- cytes (381). Intraventricular transplantation of neural
mitted neuronal progenitor cells has been demonstrated spheres attenuated brain inflammation in acute and
to be an effective method for brain repair ( 268). In addi- chronic experimental autoimmune encephalomyelitis
tion, transplants of neuronal cells bioengineered to syn- (EAE), reduced the clinical severity of disease, and re-
thesize GABA may alleviate chronic neuropathic pain duced demyelination and axonal pathology. Intravenous
(90). Fetal GABAergic neurons transplanted into the SN (IV) NSPCs injection also inhibited EAE and reduced
might be an effective means of permanently blocking CNS inflammation and tissue injury (27). A recent study
seizure generalization in kindling epilepsy and probably showed that adult NSCs transplanted at sites of injury
also other types of epilepsy (101,234). can differentiate into vascular cells (endothelial cells and

vascular smooth muscle cells) for vasculogenesis (152).
Cholinergic Neurons Transplantation of NSCs or their derivatives into a host

Transplanted cholinergic neurons may reinnervate the brain and the proliferation and differentiation of endoge-
host hippocampus, although this reinnervation appears nous stem cells by pharmacological manipulations are
to be different from that seen in the intact hippocampal promising treatments for many neurodegenerative dis-
formation (9). Intraretrosplenial cortical grafts of cholin- eases and brain injuries, such as PD, brain ischemia, and
ergic neurons can become functionally incorporated SCI (Table 4).
with the host neural circuitry, and the activity of the

Bone Marrow Stromal Cellsimplanted cholinergic neurons can be modulated by the
host brain (216) and it can rectify spatial memory defi- Bone marrow stromal (also called “stem”) cells

(BMSCs) can be easily amplified in vitro and their trans-cits produced by the loss of intrinsic cholinergic afferents
from the medial septal nucleus (217). Reconstruction of differentiation into neural cells has been claimed in vitro

and in vivo (63,82,163,171). The possible mechanismsthe septohippocampal pathways by axons extending
from embryonic cholinergic neuroblasts grafted into the responsible for the beneficial outcome observed after

BMSC transplantation into neurodegenerating tissues in-neuron-depleted septum has been confirmed in the neo-
natal rat (198). Intrahippocampal septal grafts are able clude cell replacement, trophic factor delivery, immuno-

modulation, and anti-inflammatory, neuroprotection, andto reinnervate the hippocampal formation and ameliorate
spatial learning and memory deficits, which are associ- angiogenesis (171,371,379). Transplantation of BMSCs

may have a therapeutic role after SCI (64). Adult BMSCsated with anatomical and functional incorporation into
the circuitry of the host hippocampal formation. Auto- administered intravenously have been shown to migrate

into the brain and improve neurological outcome in ratstransplantation of peripheral cholinergic neurons into the
cerebral cortex displayed amelioration of abnormal be- with traumatic brain injury (236). In parallel, data of

intracerebral transplantation suggest that bone marrowhavior in AD (160).
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Table 4. Animal Model of CNS Diseases Treated Using Neural Stem/
Progenitor Cells

Route of
Animal Model Administration Reference(s)

Spinal cord injury parenchyma 200,278
intrathecal 404
intravenous 42

Traumatic brain injury intravenous 134
intracerebral 194

Stroke intravenous 201,356
intracerebral 263,363
intracarotid 129

Parkinson’s disease intracerebral 4,45,93
Lysosomal storage disorders intracerebral 176
ALS into spinal cord 410

intrathecal 150
Hypoxic-ischemic (HI) intracerebral 288
Experimental autoimmune intravenous and

encephalomyelitis (EAE) intracerebroventricular 299
intrathecal 298

Huntington’s disease intracerebral 22,322
intravenous 202

Spinal muscular atrophy intrathecal 71

could potentially be used to induce plasticity in ischemic MSC therefore could be a viable alternative to human
ES cells or NSCs for transplantation therapy of CNSbrain. Additionally, cotransplantation of BMSCs with

ES cell-derived graft cells may be useful for preventing trauma and neurodegenerative diseases (235) (Table 6).
the development of ES cell-derived tumors (253). Re-

Umbilical Cord Blood Cellssults of this field are summarized in Table 5.
UCB is a rich source of stem cells with great prolifer-

Umbilical Cord Mesenchymal Stromal Cells ative potential, besides the bone marrow and peripheral
blood; it has the advantage of being an easily accessibleMesenchymal stromal cells (MSCs) have now been

isolated from most tissues, including the umbilical cord stem cell source and is less immunogenic compared to
other sources for stem cells (334). There are at least(UC) and UC blood (UCB; see below). UC and UCB

MSCs are more primitive than those isolated from other three kinds of stem cells in UCB: hematopoietic, mesen-
chymal, and embryonic-like stem cells, which are capa-tissue sources and do not express the major histocompat-

ibility complex (MHC) class II human leukocyte anti- ble of differentiating across tissue lineage boundaries
into neural, cardiac, epithelial, hepatocytic, and dermalgen-D-related (HLA-DR) antigens. Studies have shown

that UC MSCs are still viable and are not rejected 4 tissue both in vitro and in vivo (132,325,383). Increasing
evidence suggests that MSCs from UCB are presentmonths after transplantation as xenografts, without the

need for immune suppression, suggesting that they are a within a wide range of tissues and its therapeutic poten-
tial extends beyond the hematopoietic component (34).favorable cell source for transplantation (422). UC in-

cluding arteries (UCA), veins (UCV), and Wharton’s The expanding population of NSPCs can be selected
from the human cord blood nonhematopoietic (CD34-jelly (UCWJ) is a convenient, efficient source of MSCs

that can be expanded easily in vitro for numerous clini- negative) mononuclear fraction (49). UCB can be a po-
tential source for autologous or allogeneic monocytes/cal applications for the treatment of nonhematopoietic

diseases, and in studies of tissue regeneration and immu- macrophages. UCB monocytes should be considered as
a primary candidate owing to their easy isolation, lownosuppression (119,159). UC MSCs have proven to be

efficacious in reducing lesion sizes and enhancing be- immune rejection, and multiple characteristic advan-
tages such as their anti-inflammatory properties byhavioral recovery in animal models of ischemic and

traumatic CNS injury. Recent findings also suggest that virtue of their unique immune and inflammatory imma-
turity, and their proangiogenic ability (333). The thera-neurons derived from UC-MSC could alleviate move-

ment disorders in hemiparkinsonian animal models. UC- peutic potential of UCB cells may be attributed to the
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Table 5. Animal Model of CNS Diseases Treated Using Bone Marrow Stromal Cells

Route of
Animal Model Administration Reference(s)

Spinal cord injury parenchyma 64
intrathecal 20,275,342
intravenous 79

Spinal cord ischemia intrathecal 415
Traumatic brain injury intravenous 236

intracerebral 245
Stroke intravenous 56

intracerebral 207,414,425
intracarotid 208

Parkinson’s disease intracerebral 120,209
Demyelinated spinal cord parenchyma 5,148,340

intravenous 157
Lysosomal storage disorders intracerebral 164
ALS intravenous 70

intrathecal 131
Hypoxic-ischemic encephalopathy (HIE) intraperitoneal 123

intracerebral 415
Experimental autoimmune encephalomyelitis (EAE) intravenous 420
Huntington’s disease intravenous 86
Peripheral nerve neuropathies injected into the dorsal

root ganglion 69

inherent ability of stem cell populations to replace dam- 1995 based on favorable results in animal models in-
cluding EAE (47). Recent studies show that transplanta-aged tissues. Alternatively, various cell types within the

graft may promote neural repair by delivering neural tion of HSCs from bone marrow is an effective strategy
for SCI after directly transplanting cells into the cordprotection and secretion of neurotrophic factors (284,

334). In addition, evidence suggests that delivery of cir- 1 week after injury (185), with a similar potential in
comparison with marrow stromal cells (180). An in-culating CD34+ human UCB cells can produce func-

tional recovery in an animal stroke model with concur-
rent angiogenesis and neurogenesis leading to some

Table 7. Animal Model of CNS Diseases Treated Usingrestoration of cortical tissue (295). UCB cells have been
Umbilical Cord Blood Cellsused in preclinical models of brain injury and neurode-

generative diseases, directed to differentiate into neural
Route ofphenotypes, and have been related to functional recov-

Animal Model Administration Reference(s)
ery after engraftment in CNS lesion models (Table 7).

Spinal cord injury parenchyma 189,426*Hematopoietic Stem Cells
intravenous 170,337

Hematopoietic stem cell transplantation (HSCT) was Brain injury intravenous 237,270
proposed as a treatment for multiple sclerosis (MS) in Stroke intravenous 39,57,400

intracerebral 84,352,399
intraarterial 65Table 6. Animal Model of CNS Diseases Treated Using

Parkinson’s disease intravenous 95Umbilical Cord Mesenchymal Stromal Cells
Alzheimer’s disease intravenous 96,274
Huntington’s disease intravenous 94Route of Reference(s)
Amyotrophic lateral sclerosis intravenous 97,114,115Animal Model Administration

intrathecal 131
Hypoxic-ischemic (HI) intraperitoneal 258Spinal cord injury parenchyma 411,421

intravenous 78,413Intracerebral hemorrhage intracerebral 220
Aged brain intravenous 18Middle cerebral artery occlusion intracerebral 219
Sanfilippo syndrome type B intravenous 113Global ischemia intracerebral 166

Parkinson’s disease intracerebral 110,394
*Cell subset: CD34+



CELL THERAPY IN CNS NEURORESTORATOLOGY ERA 27

creasing number of studies provide evidence that hema- myelinated endogenous host axons, recruited endoge-
nous SCs into the injured cord, formation of a bridgetopoietic stem cells, either after stimulation of endoge-

nous stem cell pools or after exogenous hematopoietic across the lesion site, increased size of the spared tissue
rim, myelinated spared axons within the tissue rim, re-stem cell use, improve functional outcome after ische-

mic brain lesions. Various underlying mechanisms such duced reactive gliosis, and an environment that was
highly conducive to axonal growth (35). In addition,as transdifferentiation into neural lineages, neuroprotec-

tion through trophic support, and cell fusion have been SKPs transplanted into PD model rats sufficiently differ-
entiated into dopamine neuron-like cells, and partiallydeciphered (130). Furthermore, intracerebral peripheral

blood hematopoietic stem cell (CD34+) implantation in- but significantly corrected their behavior. The generated
DA neuron-like cells are expected to serve as donor cellsduces neuroplasticity by enhancing β1 integrin-mediated

angiogenesis in chronic cerebral ischemia with signifi- for neuronal repair for PD (188). Thus, this cell line has
been identified as novel, accessible, and a potentiallycantly increased modulation of neurotrophic factor ex-

pression in the ischemic hemisphere (352). autologous source for future nervous system repair
(35,192).

Adipose-Derived Adult Stem/Precursor Cells
Retinal Pigment Epithelial Cells

Adipose tissue is an abundant, accessible, and replen-
The retinal pigment epithelium consists of a unicellu-ishable source of adult stem cells that can be isolated

lar layer of neuroepithelial cells, retinal pigment epithe-from liposuction waste tissue by collagenase digestion
lial (RPE) cells, which are essential for the maintenanceand differential centrifugation (118). These adipose-
of the normal function of the retina (139). Cultured hu-derived adult stem (ADAS) cells, which exhibit charac-
man RPE cells have the capacity to synthesize neuro-teristics of multipotent adult stem cells, similar to those
trophins, including NGF, brain-derived growth factorof MSCs, are multipotent, differentiating along the adi-
(BDNF), glial cell-derived neurotrophic factor (GDNF),pocyte, chondrocyte, myocyte, neuronal, and osteoblast
and neurotrophin-3 (NT-3) (158,262). Studies havelineages (124). ADAS cells have potential applications
shown that, as an alternative cell source, RPE cells pos-for the repair and regeneration of acute and chronically
sess DAergic replacement properties with neurotrophicdamaged tissues (329). As an alternative stem cell
support on primary cultures of rat striatal (enkephaliner-source for CNS therapies, ADAS cells labeled with su-
gic) and mesencephalic (DAergic) neurons, and there-perparamagnetic iron oxide have been shown using MRI
fore could exert a positive effect in parkinsonian animalsto successfully transplant in vivo in unilateral middle
by intrastriatal transplantation (247,257,365,366). RPEcerebral artery occluded (MCAo) mice (320). The study
cells can be transduced with high efficiency using anof Ryu and colleagues indicate that improvement in neu-
adenoviral vector, making them promising vehicles forrological function by the transplantation of ADAS in
local delivery of therapeutic proteins for the treatmentdogs with SCI may be partially due to the neural differ-
of neurodegenerative diseases in a combined cell andentiation of the implanted stem cells (326). Furthermore,
gene therapeutic approach (14).the transplantation of ADAS can promote the formation

of a more robust nerve in rats with a sciatic nerve defect Amniotic Epithelial Cells
and produce a decrease in muscle atrophy (336). Human amniotic epithelial cells (AEC) do not ex-

press the HLA-A, -B, -C, or -DR antigens on their sur-Skin-Derived Precursors
face, which suggests no acute rejection in transplanta-

Skin-derived precursors (SKPs) are a self-renewing, tion (6). The human amnion membrane serves as a
multipotent precursor that are generated during embryo- bridge for axonal regeneration in vitro and in vivo; cells
genesis and persist into adulthood in the dermis, share isolated from the amniotic membrane can differentiate
characteristics with embryonic neural crest stem cells, into all three germ layers, have low immunogenicity and
including their ability to differentiate into neural crest- anti-inflammatory function (76,417). Given their multi-
derived cell types such as peripheral neurons, SCs, potent differentiation ability, capability of synthesizing
astrocytes, and endothelium (26,149). After transplanta- catecholamines including DA, and neurotrophic and
tion, the cells yield healthy cells that migrate to the le- neuroprotection effect, there is accumulating evidence
sion site, and then differentiate mainly into cells ex- that suggests that AECs have therapeutic potential for
pressing glia and neuronal markers (122). Recent multiple CNS disorders, such as PD, mucopolysacchari-
evidence indicates that transplantation of SKP-derived dosis, SCI, stroke, brain trauma, etc. (Table 8).
SCs represent a viable alternative strategy for repairing

Menstrual Blood Cellsthe injured spinal cord, with the neuroanatomical neur-
orestorative findings including good survival within the Endometrial cells supplied as a form of menstrual

blood–tissue mixture can be used for cell-based restor-injured spinal cord, reduced size of the contusion cavity,
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Table 8. Selected Literatures in Preclinical Therapeutic Application of Amniotic Epithelial Cells

Animal
Disease Host Year Reference Publication Title

Parkinson’s disease rat 2000 167 Human amniotic epithelial cells produce dopamine and survive
after implantation into the striatum of a rat model of Parkinson’s
disease: A potential source of donor for transplantation therapy

6-OHDA lesion rat 2003 168 Implantation of human amniotic epithelial cells prevents the degen-
eration of nigral dopamine neurons in rats with 6-hydroxydopamine
lesions

MPTP mouse 2008 183 Transplantation of human amniotic cells exerts neuroprotection in
MPTP-induced Parkinson disease mice

Mucopolysaccharidosis mouse 2001 186 Engraftment of genetically engineered amniotic epithelial cells cor-
type VII rects lysosomal storage in multiple areas of the brain in mucopoly-

saccharidosis type VII mice

Brain ischemia rat 2001 280 Amniotic epithelial cells transform into neuron-like cells in the is-
chemic brain

mouse 2007 316 Amniotic fluid derived stem cells ameliorate focal cerebral isch-
aemia-reperfusion injury induced behavioural deficits in mice

MCAo rat 2008 230 Human amniotic epithelial cells ameliorate behavioral dysfunction
and reduce infarct size in the rat middle cerebral artery occlusion
model

Spinal cord trauma
Transection monkey 2003 335 Role of human amniotic epithelial cell transplantation in spinal cord

injury repair research

rat 2006 405 Transplantation of human amniotic epithelial cells improves hind-
limb function in rats with spinal cord injury

Peripheral nerve injury
Sciatic nerve defects rat 2004 85 Bridging rat sciatic nerve defects with the composite nerve-muscle

autografts wrapped with human amnion matrix membrane

Brain injury rat 2006 241 Treatment of traumatic brain injury in rats with transplantation of
human amniotic cells

ative therapy in muscular dystrophy (380); subsequent Sertoli Cells
evidence shows that populations of stromal stem cells
derived from menstrual blood are multipotent, being Transplanted testis-derived Sertoli cells, which create

a localized immune “privileged” site, possess a modula-able to differentiate into chondrogenic, adipogenic, os-
teogenic, neurogenic, and cardiogenic cell lineages (290). tory function on graft rejection and survival and act as

a viable graft source for facilitating the use of xenotrans-The cultured menstrual blood express embryonic like-
stem cell phenotypic markers [Octamer-4 (Oct4), stage- plantation for diabetes, PD, Huntington’s disease, and

other neurodegenerative diseases (41,331,332). In addi-specific embryonic antigen (SSEA), Nanog], and when
grown in appropriate conditioned media, express neu- tion to producing immunoprotective factors, Sertoli cells

also secrete growth and trophic factors that appear toronal phenotypic markers [nestin, microtubule-associ-
ated protein 2 (MAP2)] (40). Transplantation of men- enhance the posttransplantation viability of isolated cells

and, likewise, the postthaw viability of isolated, cryopre-strual blood-derived stem cells, either intracerebrally or
intravenously and without immunosuppression, signifi- served cells (52). Sertoli cells grafted into adult rat

brains ameliorated behavioral deficits and enhancedcantly reduces behavioral and histological impairments
in adult ischemic stroke rats (40). DAergic neuronal survival and outgrowth (331). Cotrans-



CELL THERAPY IN CNS NEURORESTORATOLOGY ERA 29

planting of Sertoli cells may be useful as a combination younger, but not in older patients (108). Furthermore,
pathologic findings suggest that grafts of fetal mesence-therapy in CNS lesions, a strategy that could enhance

the recovery benefits associated with transplantation and phalic DA neurons could survive long term with or with-
out α-synuclein-positive Lewy bodies (184,205,259).decrease the need for, and the risks associated with,

long-term systemic immunosuppression (399). Further, Bachoud-Lévi and coworkers indicated motor and
cognitive recovery in patients with Huntington’s diseaserecent research has shown that implantation of a Sertoli

cell-enriched preparation has a significant neuroprotec- after neural transplantation (17), which continued during
long-term follow-up (16). The therapeutic value of hu-tive benefit to vulnerable motor neurons in a superoxide

dismutase 1 (SOD1) transgenic mouse model of amyo- man striatal neuroblasts in Huntington’s disease was
identified by Gallina and colleagues (112).trophic lateral sclerosis (ALS) (136).

Induced Pluripotent Stem Cells Human Neural Stem/Progenitor Cells
Induced pluripotent stem (iPS) cells are derived from or Neuronal Cells

somatic cells by ectopic expression of a few transcrip-
The clinical regimes of intracranial implant of human

tion factors. iPS cells appear to be able to self-renew
neuronal cells in stroke patients have proven safe and

indefinitely and to differentiate into all types of cells
feasible, though there is a lack of evidence for a signifi-

in the body, and are almost identical to ES cells. The
cant benefit in motor function (181,182). Data suggest

generation of patient-derived pluripotent cells applicable
that cell therapy is a safe method and can be effectively

to autologous cell-based therapies has the potential to
used for stroke (308), acute brain injury (346,347), and

revolutionize medicine (60). Since the first report from
cerebral palsy (345). In addition, neurological function

Takahashi and Yamanaka on the reprogramming of
has been restored after autologous neural stem cell trans-

mouse fibroblasts into pluripotent stem cells by defined
plantation in patients with brain trauma (428).

factors in 2006 (370), various new methods have been
developed to refine and improve reprogramming tech-

Umbilical Cord Mesenchymal Stem Cellsnology (281). The current demonstration of DAergic dif-
Therapy of UC-MSCs could stabilize the diseaseferentiation of human induced pluripotent stem cells

course of refractory progressive MS (218).(hiPSCs), replacement of segmental losses of interneur-
ons and motorneurons due to gray matter damage and

Umbilical Cord Blood Mesenchymal Stem Cellsrestoration of auditory spiral ganglion neurons suggest a
new avenue for highly effective, tumor-free, and im- Kang and colleagues report that UCB-MSC trans-
mune rejection-free cell therapy for PD, SCI, and hear- plantation may play a role in the treatment of SCI pa-
ing disturbance in the near future (151,276,323). tients (169).

CLINICAL STUDIES OF CELL-BASED
Olfactory Ensheathing Cell and OlfactoryNEURORESTORATOLOGY
Mucosa AutograftsIN CNS DISEASES (TABLE 9)

Early OEC/olfactory mucosa autograft transplants forAdrenal Medullary Tissue, Substantia Nigra,
patients with chronic SCI were reported by Huang et al.and Dopamine Neurons
in 2003 (143), Rabinovich et al. in 2003 (309), and LimaPositive findings had initially been observed by
et al. in 2006 (223), and the results were safe, feasible,Backlund et al. (19) and Lindvall et al. (225) concerning
and positive. Mackay-Sim and colleagues reported au-the transplantation of autologous adrenal medullary tis-
tologous OEC transplantation for three patients withsue into the striatum of patients with severe parkinson-
chronic SCI with 3-year follow-up was safe, feasible,ism. Subsequently, Hitchcock et al. (138), Lindvall and
and one patient showed sensory improvement (243). Thecolleagues (226,395), and Madrazo et al. (244) have sep-
therapeutic value of OEC transplantation has beenarately reported that fetal nigral implants might have
shown in chronic SCI, ALS, cerebral palsy, stroke, MS,provided a modest improvement in motor function and
and other neurodegenerative diseases and traumatichave clinically valuable improvements in most recipi-
brain insults in 1,255 patients (144,145).ents within a period of long-term follow-up after trans-

plantation into the brain of patients with PD. Freed and
Schwann Cellscolleagues randomly assigned patients to receive nerve

cell transplants or sham surgery with double-blind fol- Data from Arjmand and colleagues suggested that au-
tologous SC transplantation is safe for spinal cord in-low-up. The result showed that transplanted human em-

bryonic DA neurons survive with clinical benefit in jured patients but had no beneficial effects (327).
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Table 9. Selected Recent Articles of Clinical Studies Related to Cell-Based CNS Neurorestoratology

Publication Case
Team/Reference Country Year Number Disease Results

Fassas et al. (99) Greece 2002 85 multiple sclerosis effective
Huang et al. (143) China 2003 171 spinal cord injury improvement
Park et al. (287) Korea 2005 5 spinal cord injury improvement
Bang et al. (21) Korea 2005 5 stroke improvement
Rabinovich et al. (308) Russia 2005 10 stroke safe & effective
Saccardi et al. (328) Italy 2006 180 multiple sclerosis effective
Syková et al. (368) Czech 2006 20 spinal cord injury improvement
Yoon et al. (416) Korea 2007 35 spinal cord injury improvement
Portaccio et al. (304) Italy 2007 2 multiple sclerosis effective
Saiz et al. (330) Spain 2008 14 multiple sclerosis safe & effective
Huang et al. (144) China 2008 15 amyotrophic lateral sclerosis safe & effective
Mazzini et al. (255) Italy 2008 9 amyotrophic lateral sclerosis safe & effective
Moviglia et al. (266) Argentina 2009 8 spinal cord injury improvement
Pal et al. (283) India 2009 30 spinal cord injury safe
Burt et al. (48) US 2009 21 multiple sclerosis effective
Farge et al. (96) France 2009 347 multiple sclerosis effective
Suárez-Monteagudo et al. (364) Cuba 2009 5 stroke safe & effective
Cristante et al. (73) Brazil 2009 39 spinal cord injury safe & improved SSEPs
Cicchetti et al. (66) Canada 2009 3 Huntington’s disease effective
Huang et al. (145) China 2009 1255 spinal cord injury, amyotrophic improvement & effective

lateral sclerosis, cerebral palsy,
multiple sclerosis, stoke, etc.

Microglia/Macrophage by Farge et al. (98), Fassas et al. (99), Portaccio et al.
(304), and Saccardi et al. (328) as well as in studies forKnoller et al. reported that autologous macrophages
malignant or severe MS (54,177,246).were safe for complete SCI (178).

Nonmyeloablative autologous haemopoietic stem cell
transplantation in patients with relapsing-remitting MSBone Marrow Stromal Cell/Hematopoietic Stem

Cell/Mononuclear Phagocyte reverses neurological deficits (48). Also autologous pe-
ripheral blood stem cell transplantation has promotedResearch of Appel et al. indicated that peripheral
obvious neurologic improvement for patients with poly-cells derived from donor hematopoietic stem cells were
neuropathy, organomegaly, endocrinopathy, M-protein,able to enter the human CNS primarily at sites of moto-
and skin changes syndrome (190,191).neuron pathology and engrafted as immunomodulatory

cells, but they did not provide benefit in sporadic ALS
SUMMARY AND PROSPECTSpatients (12). On the contrary, autologous anti-human

CD133+ mononuclear cell transplantation in the motor When entering the 21st century, numerous centers
have globally started clinical trials or experimental treat-cortex delays ALS progression and improves quality of

life (251). Furthermore, many studies showed that this ments to investigate the utilization of cells, such as neu-
rons, OECs, bone marrow-derived cells, NSPCs, SCs,kind of cell therapy was feasible, safe, and effective for

ALS (78), stroke (21,364), chronic SCI patients (61,77, etc., for intractable CNS diseases. Despite their diversity
in number, clinical status of subjects, route of cell ad-266,287,368), and there was also improvement in the

acute and subacute phase of chronic SCI (416). Different ministration, and criteria to evaluate efficacy, the main
conclusion drawn from these clinical studies was thatroutes of cell transplantation such as by direct injection

into spinal cord, intravenous and intrathecal injection such therapies were safe, feasible, and had some neuro-
logical functional improvement or restorative effect thathave proven to be equally effective in SCI (116) and

traumatic brain injury (424). Evidence shows that autol- improved the patient’s quality of life to a varying extent.
These achievements had already answered YES or NOogous hematopoietic stem cell transplantation cannot be

deemed a curative treatment but instead may give rise to the question of whether the degeneration and damage
in the CNS could be functionally restored.to prolonged stabilization or change the aggressive

course of diseases (330). Similar results were reported But from the cellular biology viewpoint, there are
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jury-scientific challenges for the unknown future. Ups. J.several unanswered questions for cell transplantation:
Med. Sci. 112(3):259–288; 2007.what kind of cells would be the best ideal source, the

9. Anderson, K. J.; Gibbs, R. B.; Salvaterra, P. M.; Cotman,
best therapeutic time window, the most suitable selec- C. W. Ultrastructural characterization of identified cho-
tion for patients and diseases of different kinds, and the linergic neurons transplanted to the hippocampal forma-

tion of the rat. J. Comp. Neurol. 249(2):279–292; 1986.optimal route. Consequently, emphasis should be placed
10. Andersson, C.; Tytell, M.; Brunso-Bechtold, J. Trans-on solving these questions and evaluating the efficacy

plantation of cultured type 1 astrocyte cell suspensionsof each particular treatment modality in detail.
into young, adult and aged rat cortex: Cell migration and

On the other hand, from a clinical neurorestoratology survival. Int. J. Dev. Neurosci. 11(5):555–568; 1993.
viewpoint, the current treatment results are far from an 11. Andres, R. H.; Meyer, M.; Ducray, A. D.; Widmer,

H. R. Restorative neuroscience: Concepts and perspec-effective cure or the miracle effect, as the majority of
tives. Swiss Med. Wkly. 138(11–12):155–172; 2008.people expect; however, therapeutic strategies to retard

12. Appel, S. H.; Engelhardt, J. I.; Henkel, J. S.; Siklos, L.;disease progression for neurodegenerative diseases or to
Beers, D. R.; Yen, A. A.; Simpson, E. P.; Luo, Y.;

improve some functions from acquired damages seem to Carrum, G.; Heslop, H. E.; Brenner, M. K.; Popat, U.
be a more realistic clinical aim compared with expecting Hematopoietic stem cell transplantation in patients with

sporadic amyotrophic lateral sclerosis. Neurology 71(17):a cure or complete recovery in the present or near future.
1326–1334; 2008.Patients, scientists, and doctors should value highly the

13. Armengol, J. A.; Sotelo, C.; Angaut, P.; Alvarado-patients’ achievements from effective treatment strate-
Mallart, R. M. Organization of host afferents to cerebel-

gies that are currently still thought by some to not be lar grafts implanted into kainate lesioned cerebellum in
available. adult rats. Eur. J. Neurosci. 1(1):75–93; 1989.

14. Arnhold, S.; Semkova, I.; Andressen, C.; Lenartz, D.;So far, the pleasurable reality is that landmark ad-
Meissner, G.; Sturm, V.; Kochanek, S.; Addicks, K.;vances and the results of preclinical and clinical studies
Schraermeyer, U. Iris pigment epithelial cells: A possiblein neurorestoratolgy have been driving our traditional
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Catasús, C.; Carballo-Barreda, M.; Rodrı́guez-Rojas, R.;350. Shi, X.; Kang, Y.; Hu, Q.; Chen, C.; Yang, L.; Chen, L.;

Huang, H.; Zhou, C. A long-term observation of olfac- Gómez-Fernández, L.; Alberti-Amador, E.; Macı́as-
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